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Abstract: - A theoretical analysis is carried out to study the heat and mass transfer effects on elastico-viscous 
fluid flow in a vertical porous channel with rotation and Hall current. The two porous plates are subjected 
respectively to constant injection and suction velocity. A magnetic field of uniform strength is applied in the 
direction perpendicular to the plates. The induced magnetic field is neglected due to the assumption of small 
magnetic Reynolds number. The elastico-viscous fluid flow is characterized by Walters liquid (Model B/).The 
analytical solutions to the coupled non-linear equations governing the motion are obtained by regular 
perturbation technique. The effects of rotation, buoyancy force, magnetic field, thermal radiation and heat 
generation parameters on resultant velocity and temperature fields are analyzed and illustrated graphically in 
possible cases. The importance of the problem can be seen in cooling of electronic components of a nuclear 
reactor, bed thermal storage and heat sink in the turbine blades. 
 
 
Key-Words: - Elastico-viscous, Hall current, Walters liquid (Model B/), perturbation, MHD, radiation. 
 
1 Introduction

Hydromagnetic free convective channel flow 
has paramount importance (because of its potential 
applications) in a number of engineering processes. 
To be more specific MHD generators and 
accelerators design, heat treated materials travelling 
between a feed roll and a wind-up roll, aerodynamic 
extrusion of plastic sheets, glass fiber are some 
practical examples of channel flow.  

The effects of Hall current cannot be neglected 
as the conducting fluid when it is an ionized gas, 
and applied field strength is strong then the electron 
cyclotron frequency ߱ =  where e, B, and m) ݉/ܯ݁
denote the electron charge, the applied magnetic 
field, and mass of an electron, respectively.) exceeds 
the collision frequency so that the electron makes 
cyclotron orbit between the collisions which will 
divert in a direction perpendicular to the magnetic 
and electric fields directions. Thus, if an electric 
field is applied perpendicular to the magnetic field 
then whole current will not pass along the electric 
field. This phenomena of flow of the electric current 
across an electric field with magnetic fields is 
known as Hall effect, and accordingly this current is 
known as Hall current [26]. So it is very necessary 
to study the effect of Hall current in many industrial 
processes.    

 El-Hakiem [9] has studied MHD oscillatory 
flow on free convection radiation through a porous 
medium with constant suction velocity. Oscillating 
plate temperature effects on a flow past an infinite 
vertical porous plate with constant suction and 
embedded in a porous medium have been discussed 
by Jaiswal and Soundalgekar [15]. Singh et al. [24] 
have analyzed a periodic solution of oscillatory 
Couette flow through porous medium in rotating 
system. Gupta [10] has explained hydromagnetic 
flow past a porous flat plate with hall effects. Hall 
effects on the hydromagnetic flow past an infinite 
porous flat plate has considered by Jana et al. [14]. 
Pop et al. [22] have measured hall effects on 
magnetohydrodynamic free convection about a 
semi-infinite vertical flat plate. Hossain et al. [11] 
have discussed the effect of radiation on free 
convection from a porous vertical plate. Effects of 
radiation and variable viscosity on a MHD free 
convection flow past a semi-infinite flat plate with 
an aligned magnetic field in the case of unsteady 
flow has been investigated by Seddeek [23]. Ibrahim 
et al. [12] have analyzed radiating effect on 
chemically reacting magnetohydrodynamic (MHD) 
boundary layer flow of heat and mass transfer 
through a porous vertical 

flat plate. Influence of magnetic field and 
thermal radiation by natural convection past vertical 

cone subjected to variable surface heat flux have 
studied by Palani and Kim [21]. Viscous dissipation 
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and Joule heating effects on MHD-free convection 
from a vertical plate with power-law variation in 
surface temperature in the presence of Hall and ion-
slip currents have been examined by Aboeldahab 
and El Aziz [3]. Makinde and Chinyoka [17] have 
calculated numerical study of unsteady 
hydromagnetic generalized Couette flow of a 
reactive third-grade fluid with asymmetric 
convective cooling. Combined effects of Joule 
heating and chemical reaction on unsteady 
magnetohydrodynmic mixed convection of a 
viscous dissipating fluid over a vertical plate in 
porous media with thermal radiation have analyzed 
by Pal and Talukdar [19]. Pal and Talukdar [20] 
have recently studied influence of Hall current and 
thermal radiation on MHD convective Heat and 
mass transfer in a rotating porous channel with 
chemical reaction. 
 The applications of the mechanisms of 
elastico-viscous fluid flows in modern technology 
and industries have attracted the researchers in a 
large scale. Authors like Kelly et al. [16], Abel et al. 
[1], Sonth et al. [25], Abel et al. [2], Choudhury et 
al. [4, 5, 6, 7, 8] have analyzed some problems of 
physical interest in this field. 
 The purpose of the present study is to 
analyze the effects of hall current and thermal 
radiation with first-order chemical reaction on 
elastico-viscous fluid on a rotating porous channel 
with suction and injection. 
The constitutive equation for Walters liquid (Model 
B´) is 
௜௞ߪ = ݌−  ௜݃௞ + ௜௞ᇱߪ ௜௞′ߪ,  = ଴݁௜௞ߟ2 − 2݇଴݁ᇱ௜௞(1) 
where σ୧୩ is the stress tensor, p is isotropic pressure, 
g୧୩ is the metric tensor of a fixed co-ordinate system 
x୧,  v୧ is the velocity vector, the contravarient form 
of e′୧୩ is given by 
݁ᇱ௜௞ = డ௘೔ೖ

డ௧
+ ௠ݒ  ݁ ,௠

௜௞ −  ௠,  ݒ
௞ ݁௜௠ − ௠,  ݒ

௜ ݁௠௞         (2)                                                                        
It is the convected derivative of the deformation rate 
tensor e୧୩ defined by  
 2݁௜௞ = ௜,௞ݒ + ௞ݒ ,௜                                                       (3)                                                                                                                  
Here η଴ is the limiting viscosity at the small rate of 
shear which is given by 
଴ߟ = ∫ ܰ(߬)݀߬  ܽ݊݀  ஶ

଴ ݇଴ = ∫ ߬ܰ(߬)݀߬ஶ
଴           (4)                                                                            

N( ) being the relaxation spectrum as introduced by 
Walters [27, 28]. This idealized model is a valid 
approximation of Walters liquid (Model B´) taking 
very short memories into account so that terms 
involving 
 ,                                   (5)  
have been neglected. 
 

 
2 Problem Formulation 
           We consider unidirectional oscillatory free 
convective flow of a visco-elastic incompressible 
and electrically conducting fluid between two 
insulating infinite vertical permeable plates 
separated by a distance d. A constant injection 
velocity ݓ଴ is applied at the stationary plate ̅ݖ = 0. 
Also, a constant suction velocity ݓ଴ is applied at the 
plate ̅ݖ = ݀, which oscillates in its own plane with a 
velocity ഥܷ(̅ݐ) about a nonzero constant mean 
velocity ଴ܷ. The channel rotates as a rigid body with 
angular velocity ߗത  about the ̅ݖ –axis perpendicular 
to the planes of the plates. A strong transverse 
magnetic field of uniform strength ܪ଴ is applied 
along the axis of rotation by neglecting induced 
electric and magnetic fields. The fluid is assumed to 
be a gray, emitting, and absorbing, but nonscattering 
medium. The radiative heat flux term can be 
simplified by using Rosseland approximation. It is 
also assumed that the chemically reactive species 
undergo first-order irreversible chemical reaction. 

 The solenoidal relation for the magnetic 
field ∇ሬሬ⃗ ሬሬ⃗ܪ. = 0, where ܪሬሬ⃗ = ഥ௫ܪ) ഥ௬ܪ,  ഥ௭) givesܪ,
ഥ௭ܪ =  ,଴(constant) everywhere in the flow fieldܪ
which gives  ܪሬሬ⃗ = ௫̅ܬ)  If .(଴ܪ,0,0) , ,௬̅ܬ  ௭̅) are theܬ
component of electric current density ⃗ܬ , then the 
equation of conservation of electric charge ∇ሬሬ⃗ . ܬ⃗ = 0 
gives ܬ௭̅ = constant. This constant is zero, that is 
௭̅ܬ = 0 everywhere in the flow since the plate is 
electrically non-conducting. The generalized Ohm’s 
law, in the absence of the electric field [18], is of the 
form 

ܬ⃗ +
߱௘߬௘
଴ܪ

൫⃗ܬ × ሬሬ⃗ܪ ൯ = ߪ ൬ߤ௘ ሬܸ⃗ × ሬሬ⃗ܪ +
1
݁݊௘

 ௘൰   (6)݌∇

where  ሬܸ⃗ ,ߪ, ௘,߱௘ߤ , ߬௘ , ݁, ݊௘ and ݌௘ are the velocity, 
the electrical conductivity, the magnetic 
permeability, the cyclotron frequency, the electron 
collision time, the electric charge, the number 
density of the electron, and the electron pressure, 
respectively. Under the usual assumption, the 
electron pressure (for a weakly ionized gas), the 
thermoelectric pressure, and ion slip are negligible, 
so we have from the Ohm’s law 
௫̅ܬ   +߱௘߬௘ܬ௬̅ =                            ,ݒ଴̅ܪ௘ߤߪ
௬̅ܬ   −߱௘߬௘ܬ௫̅ = തݑ଴ܪ௘ߤߪ−                                    (7) 
from which we obtain that 

௫̅ܬ =
തݑ݉)଴ܪ௘ߤߪ + (ݒ̅

1 + ݉ଶ ,        

௬̅ܬ   =
ݒ̅݉)଴ܪ௘ߤߪ − (തݑ

1 +݉ଶ                                        (8) 
Since the plates are infinite in extent, all the 
physical quantities except the pressure depend only 
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on ̅ݖ  and ̅ݐ. The physical configuration of the 
problem is shown in Figure 1. A Cartesian 
coordinate system is assumed and ̅ݖ  -axis is taken 
normal to the plates, while ̅ݔ -and ݕത -axes are in the 
upward and perpendicular directions on the plate 
̅ݖ = 0 (origin) , respectively. The velocity 
components ݑത ഥݓ ,  ݒ̅ ,  are in the ̅ݕ ,  -ݔത-  , ̅ݖ  - 
directions, respectively. The governing equations in 
the rotating system in presence of Hall current, 
thermal radiation, and chemical reaction are given 
by the following equations:       
∂wഥ
∂zത

= 0 ⇒ wഥ = w଴                                                (9) 
തݑ߲
̅ݐ߲

+ ଴ݓ
തݑ߲
̅ݖ߲

− ݒത̅ߗ2

= −
1
ρ
∂Pഥ
∂xത

+ ν
∂ଶuത
∂zതଶ

−
k଴
ρ
ቆ
∂ଷuത
∂t ̅ ∂zതଶ

+ w଴
∂ଷuത
∂zതଷ

ቇ

+ g଴β(Tഥ − Tୢ) + g଴β∗(Cത − Cୢ)

+
H଴

ρ
J୷̅                                      (10) 

∂vത
∂t ̅

+ w଴
∂vത
∂zത

+ 2Ωഥuത

= −
1
ρ
∂Pഥ
∂yത

+ ν
∂ଶvത
∂zതଶ

−
k଴
ρ
ቆ
∂ଷvത
∂t ̅ ∂zതଶ

+ w଴
∂ଷvത
∂zതଷ

ቇ

−
H଴

ρ
J୶̅                                       (11) 

∂Tഥ
∂t ̅

+ w଴
∂Tഥ
∂zത

=
κ
ρC୮

∂ଶTഥ
∂zതଶ

−
Q଴

ρC୮
(Tഥ − Tୢ )

−
1
ρC୮

∂qത ୰
∂zത

                                 (12) 

∂Cത
∂t ̅

+ w଴
∂Cത
∂zത

= D୫
∂ଶCത
∂zതଶ

− kଵ(Cത − Cୢ)              (13) 
The initial and boundary conditions are 
uത = vത = 0,         Tഥ = T଴ + ε(T଴ − Tୢ)cosωഥt ̅,  
Cത = C଴ + ε(C଴ − Cୢ)cosωഥ t ̅           at zത = 0                                  
uത = Uഥ(t ̅) = U଴(1 + εcosωഥ t ̅),  vഥ = 0, Tഥ = Tୢ, 
Cത = Cୢ                                            at zത = d   (14)  
We introduce the following dimensionless variables 

η =
zത
d

, u =
uത

U଴
, v =

vത
U଴

, t =
ωഥ
t ̅

,ω =
ωഥdଶ

ν
, 

 Ω =
Ωഥdଶ

ν
, 

 λ =
w଴d
ν

, θ =
Tഥ − Tୢ
T଴ − Tୢ

,∅ =
Cത − Cୢ

C଴ − Cୢ
          (15)  

We combine the equations (10) and (11) and take 
q=u+iv. Then the dimensionless governing 
equations are: 

ω
∂q
∂t

+ λ
∂q
∂η

=
∂ଶq
∂ηଶ

+ω
∂U
∂t

− 2iΩ(q− U)

− k ቆ
ω
λ

∂ଷq
∂ηଶ ∂t

+
∂ଷq
∂ηଷ

ቇ

+ λଶ(Grθ + Gm∅)

−
Mଶ(1 + im)

1 + mଶ (q − U)         (16) 

ω
∂θ
∂t

+ λ
∂θ
∂η

=
1
Pr
൬1 +

4
3R
൰
∂ଶθ
∂ηଶ

−
Qୌ

Pr
θ        (17) 

ω
∂∅
∂t

+ λ
∂∅
∂η

=
1
Sc
∂ଶ∅
∂ηଶ

− ξ∅                              (18) 

where ݎܩ = ݃଴ߚ( ଴ܶ − ௗܶ)/ܷ଴ݓ଴
ଶ  is the modified 

thermal Grashof number, ݉ܩ = ݃଴ܥ)ߥ∗ߚ଴ − /(ௗܥ
଴ܷݓ଴ଶ is the modified solutal Grashof number, 

ݎܲ = ܯ ,is the Prandtl number ߢ/௣ܥߩߥ =
is the Hartmann number, ܳℎ  ߤ/ߪ଴݀ඥܪ = ܳ଴݀ଶ/ߢ  
is the heat source parameter, ܴ = ∗ߪ4/∗݇ߢ ௗܶ is the 
radiation parameter, ܵܿ =  ௠  is the Schmidtܦ/ߥ
number, and ߦ = ݇ଵ݀ଶ/ߥ  is the reaction parameter. 
 The modified boundary conditions (14) can 
be expressed in complex form as 
q = 0, θ = 1 +

ε
2
൫e୧୲ + eି୧୲൯,  

 ∅ = 1 + க
ଶ
൫e୧୲ + eି୧୲൯,                   at  η = 0 

q = U(t) = 1 + க
ଶ
൫e୧୲ + eି୧୲൯, θ = 0, ∅ = 0    

at η = 1                                                           (19) 
 
 
3 Method of solution 

The set of partial differential equations 
(2.11)-(2.13) cannot be solved in closed form. So to 
solve these equations we assume that 
ℜ(η, t) = ℜ଴(η) +

ε
2
൫ℜଵ(η)e୧୲ + ℜଶ(η)eି୧୲൯  (20) 

where ℜ stands for ݍ or ߠ or ∅ and ߝ ≪ 1 which is a 
perturbation parameter.                   Substituting (20) 
into equations (16)-(18) and comparing the 
harmonic and non-harmonic terms, we obtain the 
following ordinary differential equations: 
q଴´´ − λq଴´ − Sq଴ − kq଴´´´ = −S − λଶ(Grθ଴ +
Gm∅଴)                                                                      (21)  

qଵ´´ − λqଵ´ − (S + iω)qଵ − k ቀன୧
஛

qଵ´´ + qଵ´´´ቁ =
−(S + iω) − λଶ(Grθଵ + Gm∅ଵ)                         (22)  
qଶ´´ − λqଶ´ − (S − iω)qଶ − k ቀqଶ´´´ −

ன୧
஛

qଶ´´ቁ =
−(S − iω) − λଶ(Grθଶ + Gm∅ଶ)                         (23)  

θ଴´´ −
3λPrR
3R + 4

θ଴´ −
3RQh

3R + 4
θ଴ = 0                       (24) 

θଵ´´ −
3λPrR
3R + 4

θଵ´ − (iωPr + Qh)
3R

3R + 4
θଵ

= 0                                               (25) 
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θଶ´´ −
3λPrR
3R + 4

θଶ´ + (iωPr − Qh)
3R

3R + 4
θଶ = 0 (26) 

∅଴´´ − λSc∅଴´ − ξSc∅଴ = 0                                        (27) 
∅ଵ´´ − λSc∅ଵ´ − Sc(iω + ξ)∅ଵ = 0                          (28) 
∅ଶ´´ − λSc∅ଶ´ + Sc(iω − ξ)∅ଶ = 0                          (29) 
The transformed boundary conditions are 
q଴ = 0, qଵ = 0, qଶ = 0,θ଴ = 1,θଵ = 1, 
 θଶ = 1,∅଴ = 1,∅ଵ = 1,∅ଶ = 1 at η = 0 
q଴ = 1, qଵ = 1, qଶ = 1,θ଴ = 0,θଵ = 0, 
 θଶ = 0,∅଴ = 0,∅ଵ = 0,∅ଶ = 0 at η = 1          (30)                 
where 
S = ୑మ(ଵା୧୫)

(ଵା୫మ) + 2iΩ and dashes denote the 
derivatives w.r.t.  ߟ. 
Solutions of (24)-(29) under boundary condition 
(30) are 
∅଴ = Cଵe୅భ஗ + Cଶe୅మ஗                                          (31) 
∅ଵ = Cଷe୅య஗ + Cସe୅ర஗                                          (3.2) 
∅ଶ = Cହe୅ఱ஗ + C଺e୅ల஗                                          (33) 
θ଴ = C଻e୅ళ஗ + C଼e୅ఴ஗                                          (34) 
θଵ = Cଽe୅వ஗ + Cଵ଴e୅భబ஗                                       (35) 
θଶ = Cଵଵe୅భభ஗ + Cଵଶe୅భమ஗                                   (36) 
Again the set of partial differential equations (21)-
(23) can’t be solved in closed form. So we have 
used multi-parameter perturbation method to solve 
these equations. We assume that 
q଴ = q଴଴ + kq଴ଵ                                                    (37)                                                                                    
qଵ = qଵ଴ + kqଵଵ                                                    (38) 
qଶ = qଶ଴ + kqଶଵ                                                    (39) 
where k ≪ 1, for small shear rate [13].  
Substituting (37)-(39) in the equations (21)-(23) and 
equating the coefficients of the same degree terms 
and neglecting terms of ܱ(݇ଶ), the following 
differential equations are obtained:  
q´´଴଴ − λq´଴଴ − Sq଴଴

= −S
− λଶ(Grθ଴ + Gm∅଴)                 (40) 

q´´ଵ଴ − λq´ଵ଴ − (S + iω)qଵ଴
= −(S + iω)
− λଶ(Grθଵ + Gm∅ଵ)                  (41) 

q´´ଶ଴ − λq´ଶ଴ − (S − iω)qଶ଴
= −(S − iω)
− λଶ(Grθଶ + Gm∅ଶ)                  (42) 

q´´଴ଵ − λq´଴ଵ − Sq଴ଵ = q´´´଴଴                               (43) 
q´´ଵଵ − λq´ଵଵ − (S + iω)qଵଵ

=
iω
λ

q´´ଵ଴ + q´´´ଵ଴                     (44) 
q´´ଶଵ − λq´ଶଵ − (S − iω)qଶଵ

= q´´´ଶ଴ −
iω
λ

q´´ଶ଴                     (45) 
corresponding boundary conditions are 
q଴଴ = 0, q଴ଵ = 0, qଵ଴ = 0, qଵଵ = 0, qଶ଴ = 0, qଶଵ =
0    at     η = 0 

q଴଴ = 1, q଴ଵ = 0, qଵ଴ = 0, qଵଵ = 0, qଶ଴ = 1, qଶଵ =
0 atη = 1                                                                   (46)                     
The solutions of equations (40)-(45) under the 
boundary conditions (46) are 
q଴଴ = 1 + Cଵଷe୅భయ஗ + Cଵସe୅భర஗ + Bଵe୅భ஗

+ Bଶe୅మ஗ + Bଷe୅ళ஗
+ Bସe୅ఴ஗                                     (47) 

q଴ଵ = Cଵଽe୅భయ஗ + Cଶ଴e୅భర஗ + Bଵଷe୅భయ஗ + Bଵସe୅భర஗
+ Bଵହe୅భ஗ + Bଵ଺e୅మ஗ + Bଵ଻e୅ళ஗
+ Bଵ଼e୅ఴ஗                                     (48) 

qଵ଴
= 1 + Cଵହe୅భఱ஗ + Cଵ଺e୅భల஗ + Bହe୅య஗ + B଺e୅ర஗
+ B଻e୅వ஗ + B଼e୅భబ஗                                                (49) 
qଵଵ = Hଵe୅భఱ஗ + Hଶe୅భల஗ + Bଵଽe୅య஗ + Bଶ଴e୅ర஗

+ Bଶଵe୅వ஗ + Bଶଶe୅భబ஗               (50) 
qଶ଴ = 1 + Cଵ଻e୅భళ஗ + Cଵ଼e୅భఴ஗ + Bଽe୅భభ஗

+ Bଵ଴e୅భమ஗ + Bଵଵe୅ఱ஗
+ Bଵଶe୅ల஗                                     (51) 

qଶଵ = Hଷe୅భఴ஗ + Hସe୅భళ஗ + Bଶଷe୅భభ஗ + Bଶସe୅భమ஗
+ Bଶହe୅ఱ஗ + Bଶ଺e୅ల஗                (52) 

 
 
4 Amplitude and phase difference due 
to steady and unsteady flow 
Equation (47) and (48) correspond to the steady 
part, which gives ݑ଴ as primary and ݒ଴ as secondary 
velocity components. The amplitude (resultant 
velocity) and phase difference due to these primary 
and secondary velocities for the steady flow are 
given by 
R଴ = ඥu଴ଶ + v଴ଶ   ,   α଴ = tanିଵ ቀ୴బ

୳బ
ቁ                (53) 

where ݑ଴(ߟ) + (ߟ)଴ݒ݅ =  (ߟ)଴ݍ
Equations (49)-(52) give the unsteady part of the 
flow. Thus, unsteady primary and secondary 
velocity components ݑଵ(ߟ) and ݒଵ(ߟ), respectively, 
for the fluctuating flow can be obtained from the 
following: 
uଵ(η, t) = [Real qଵ(η) + Realqଶ(η)]cost

− [Im qଵ(η)
− Imqଶ(η)]sint                         (54) 

vଵ(η, t) = [Real qଵ(η) − Realqଶ(η)]sint
+ [Im qଵ(η) + Imqଶ(η)]cost 

The amplitude (resultant velocity) and the phase 
difference of the unsteady flow are given by 

R୴ = ටuଵଶ + vଵଶ,             αଵ = tanିଵ ൬
vଵ
uଵ
൰ ,        (55) 

where ݑଵ(ߟ) + (ߟ)ଵݒ݅ = ௜௧݁(ߟ)ଵݍ +  ௜௧ି݁(ߟ)ଶݍ
            The amplitude (resultant velocity) and the 
phase difference 
R୬ = ඥuଶ + vଶ,        α = tanିଵ ቀ

v
u
ቁ ,                 (56) 
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where ݑ =Real part of ݍ and ݒ =Imaginary part of 
 .ݍ
 
 
5 Amplitude and phase difference of 
shear stresses due to steady and 
unsteady flow at the plate 
The amplitude and phase difference of shear stresses 
at the stationary plate (η=0) for the steady flow can 
be obtained as 

τ଴୰ = ටτ଴୶ଶ + τ଴୷ଶ , β଴ = tanିଵ ൬
τ଴୷
τ଴୶

൰ , (57) 

For the unsteady part of the flow, the amplitude and 
phase difference of shear stresses at the stationary 
plate (ߟ = 0) can be obtained as  

τଵ୰ = ටτଵ୶ଶ + τଵ୷ଶ,       βଵ = tanିଵ ൬
τଵ୷
τଵ୶

൰ ,     (58) 

where 

τଵ୶ + iτଵ୷ = ൬
∂qଵ
∂η

൰
஗ୀ଴

   e୧୲ +   ൬
∂qଶ
∂η

൰
஗ୀ଴

  eି୧୲      

The amplitude and phase difference of shear stresses 
at the stationary plate (η=0) for the flow can be 
obtained as 

τ = ൬
∂q
∂η
൰
஗ୀ଴

= ටτ୶ଶ + τ୷ଶ  ,     βଶ

= tanିଵ ൬
τ୷
τ୶
൰ ,                             (59) 

where  ߬௫ =Real part of ቀడ௤
డఎ
ቁ
ఎୀ଴

 and ߬௬ = 

Imaginary part of ቀడ௤
డఎ
ቁ
ఎୀ଴

 

The Nusselt number is given by 

Nu = −൬1 +
4

3R
൰ ൬
∂θ
∂η
൰
஗ୀ଴

= N୶ + iN୷            (60) 

The rate of heat transfer (i.e. , heat flux ) at the plate 
in terms of amplitude and phase is given by 

Θ = ටN୶
ଶ + N୷

ଶ ,       γ = tanିଵ ൬
N୷

N୶
൰                  (61) 

The Sherwood number is given by 

Sh = ൬
∂∅
∂η
൰
஗ୀ଴

= M୶ + iM୷                                 (62) 

The rate of mass transfer (i.e.,  mass flux) at the 
plate in terms of amplitude and phase is given by 

Φ = ටM୶
ଶ + M୷

ଶ , δ = tanିଵ ൬
M୷

M୶
൰             (63) 

 
 
6 Results and discussion 

The numerical values of the transient 
velocity, transient temperature, coefficient of skin 
friction and Nusselt number are computed for 
different parameters like modified Grashof number, 

Grashof number, Hartmann number, Prandtl 
number, Schmidt number, frequency parameter, 
suction and injection parameter, heat source 
parameter, chemical reaction parameter and 
radiation parameter. The velocity profile and the 
shearing stress at the plate are illustrated graphically 
for various values of flow parameters involved in 
the solution. The values of the parameters  ݎܩ =
݉ܩ,5 = ܯ,5 = 3,݉ = 1, ߣ = ݎܲ,1 = 3,ܵܿ =
ߗ,4 = 5,߱ = 5,ܴ = 1,ܳℎ = ߦ,5 = 0.1 are kept 
fixed throughout the discussion. 
 The effects of visco-elastic parameter on the 
thermal, mass and hydrodynamic behaviours of 
buoyancy-induced flow in a rotating vertical 
channel have been explained in this study. The 
visco-elastic effect is exhibited through the non-
dimensional parameter K. The corresponding results 
for Newtonian fluid are obtained by setting K=0. 
Temperature of the heated wall (left wall) at ̅ݖ = 0 
is a function of time as given in the boundary 
conditions and the cooled wall at ̅ݖ = ݀ is 
maintained at a constant temperature. Further, it is 
assumed that the temperature difference is small 
enough so that the density changes of the fluid in the 
system will be small.  When the injection/suction 
parameter λ is positive, fluid is injected through the 
hot wall into the channel and sucked out through the 
cold wall. 

The profiles for resultant velocity ܴ௡  for the 
flow are shown in Figures 2-10 for various flow 
parameters. Figures 2 and 3 represent the variation 
of fluid velocity against Grashof number for mass 
transfer (Gm) and Grashof number for heat transfer 
(Gr). Grashof number studies the behaviour of free 
convection and it is defined as the ratio of buoyancy 
force to viscous force. It plays an important role in 
both heat and mass transfer mechanisms. Gr 
characterizes the free convection parameter for heat 
transfer and Gm characterizes the free convection 
parameter for mass transfer. In both the cases, it is 
observed that fluid velocity boost up to a 
considerable amount within the stationary plate with 
the increase of Gm and Gr. 

Figure 4 represent the velocity profile for 
various values of suction parameter λ. It is noticed 
that both non-Newtonian and Newtonian fluid first 
boost up to a considerable amount and then 
diminishes. With the rising value of suction 
parameter λ fluid velocity experiences an 
accelerating trend. 

The effects of Hartmann number and hall 
parameter on fluid velocity have been cited in figure 
5 and 6. An inclined trend is observed for both kind 
of fluid velocity with the growing nature of 
magnetic parameter and hall parameter. The 
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maximum effect of both the parameters on visco-
elastic fluid and Newtonian fluid is seen in the 
neighbourhood of the plate. 

In Figure 7 it is embodied that with the 
increase in rotation parameter Ω resultant fluid 
velocity follows an increasing path for η> 0.5 for 
both simple as well as elastico-viscous fluid flow. 
This effect is due to the rotation effects being more 
dominant near the walls, so when Ω reaches high 
values, the secondary velocity component v 
decreases with increase in rotation parameter while 
approaching to the right plate. 

Figures 8, 9, 10 illustrate the behaviour of 
fluid flow for various values of radiation parameter 
R, chemical reaction parmeter ξ and heat source 
parameter ܳℎ. In all the cases with the enhancement 
of radiation, chemical and heat source parameter 
resultant velocity subdues and matching movement 
is observed for both kind of fluid flow mechanisms.     

The study of skin friction experienced by 
the governing fluid flow gives the significance of 
the concerned problem. So knowing the velocity 
field, the shearing stress at the plate is obtained for 
various values of visco-elastic parameter. Figures 
11-17 portray the nature of viscous drag formed 
during the motion of Newtonian and non-Newtonian 
fluids.  

Figure 11, 12 and 13 depict that the 
magnitude of skin friction improved along with the 
amplified values of Grashof number for heat and 
mass transfer (Gr and Gm) and suction parameter λ 
for Newtonian as well as non-Newtonian cases. 

But a complete reverse trend is observed in 
Figures 14, 15 and 16. Figures 14, 15 and 16  
represent the viscous drag against various values of 
hall parameter m, heat source parameter Qh and 
radiation parameter R. In all the cases it is pragmatic 
that shearing stress profile follow a diminishing 
trend with the increasing values of those flow 
parameters. 

Figure 17 describe the viscous drag against 
rotation parameter Ω. In this case also skin friction 
increases with the increase in rotation parameter.  

Figures 18 and 19 illustrate the Nusselt 
number and mass concentration against ω. It is 
observed in both the cases that the rate of heat 
transfer and rate of mass transfer are not affected 
significantly during the changes made in visco-
elasticity of the fluid flow. 
 
 
7 Conclusions 
The influence of radiation parameter and hall 
current on unsteady MHD heat and mass transfer of 

an oscillatory convective flow in a rotating vertical 
porous channel with injection is studied analytically. 
Computed results are presented to exhibit their 
dependence on the important physical parameters. 
We conclude following from the numerical results: 

 The velocity profile shows an enhancement 
trend in the neighbourhood of the plate and 
then follows a decreasing path. 

 The fluid is decelerated with the increasing 
values of visco elastic parameter in 
comparison with the Newtonian fluid. 

 The fluid is decelerated with the increasing 
values of visco elastic parameter in 
comparison with the Newtonian fluid. 

 The shearing stress formed at the plate is 
subdued with the growing trend of visco-
elastic parameter for m, Qh, R. 

 The skin friction increases with increase in 
Gr, Gm, λ and Ω. 

 The rate of heat transfer and rate of mass 
transfer are not significantly affected by 
visco-elastic parameter. 
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Figure 1: Physical configuration of the problem. 

 

Figure 2: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .݉ܩ for different values of  4/ߨ

 

Figure 3: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ߣ for different values of  4/ߨ

 

Figure 4: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ݎܩ for different values of  4/ߨ

 

Figure 5: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ܯ for different values of  4/ߨ

 

Figure 6: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .݉ for different values of  4/ߨ
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Figure 7: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ߗ for different values of  4/ߨ

 

Figure 8: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ܴ for different values of  4/ߨ

 

Figure 9: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .ߦ for different values of  4/ߨ

 

Figure 10: Resultant velocity Rn due to ݑ and ݒ 
versus η at ݐ =  .for different values of ܳℎ  4/ߨ

 

Figure 11: Variation of skin friction τ against Gr at 
ݐ =  .  4/ߨ

 

Figure 12: Variation of skin friction τ against Gm at 
ݐ =  .  4/ߨ

 

Figure 13: Variation of skin friction τ against λ at 
ݐ =  .4/ߨ

 

Figure 14: Variation of skin friction τ against m at 
ݐ =  .  4/ߨ

 

Figure 15: Variation of skin friction τ against ܳℎ at 
ݐ =  .  4/ߨ
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Figure 16: Variation of skin friction τ against R at 
ݐ =    4/ߨ

 

Figure 17: Variation of skin friction τ against Ω at 
ݐ =  .  4/ߨ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18: Variation of Nusselt number Nu against 
ω at ݐ =   .  4/ߨ

 

Figure 19: Variation of concentration profile against 
ω at ݐ =    4/ߨ
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